Wingless and aristaless2 define a developmental ground plan for moth and butterfly wing pattern evolution.
نویسندگان
چکیده
Butterfly wing patterns have long been a favorite system for studying the evolutionary radiation of complex morphologies. One of the key characteristics of the system is that wing patterns are based on a highly conserved ground plan of pattern homologies. In fact, the evolution of lepidopteran wing patterns is proposed to have occurred through the repeated gain, loss, and modification of only a handful of serially repeated elements. In this study, we examine the evolution and development of stripe wing pattern elements. We show that expression of the developmental morphogen wingless (wg) is associated with early determination of the major basal (B), discal (DI and DII), and marginal (EI) stripe patterns in a broad sampling of Lepidoptera, suggesting homology of these pattern elements across moths and butterflies. We describe for the first time a novel Lepidoptera-specific homeobox gene, aristaless2 (al2), which precedes wg expression during the early determination of DII stripe patterns. We show that al2 was derived from a tandem duplication of the aristaless gene, whereupon it underwent a rapid coding and cis-regulatory divergence relative to its more conserved paralog aristaless1 (al1), which retained an ancestral expression pattern. The al2 stripe expression domain evolutionarily preceded the appearance of the DII pattern elements in multiple lineages, leading us to speculate that al2 represented preexisting positional information that may have facilitated DII evolution via a developmental drive mechanism. In contrast to butterfly eyespot patterns, which are often cited as a key example of developmental co-option of preexisting developmental genes, this study provides an example where the origin of a major color pattern element is associated with the evolution of a novel lepidopteran homeobox gene.
منابع مشابه
The Evolution of Pattern Formation in Butterfly Wings
I employed a comparative gene expression approach to address the evolution of butterfly wing pattern formation at several levels, including early pattern determination and pigment gene regulation during late development. Expression analysis of the receptor molecule Notch suggested several previously unknown roles for Notch signaling in butterfly wing patterning. Notch upregulation was found to ...
متن کاملElements of butterfly wing patterns.
The color patterns on the wings of butterflies are unique among animal color patterns in that the elements that make up the overall pattern are individuated. Unlike the spots and stripes of vertebrate color patterns, the elements of butterfly wing patterns have identities that can be traced from species to species, and typically across genera and families. Because of this identity it is possibl...
متن کاملButterfly Wing Pattern Evolution Is Associated with Changes in a Notch/Distal-less Temporal Pattern Formation Process
In butterflies there is a class of "intervein" wing patterns that have lines of symmetry halfway between wing veins. These patterns occur in a range of shapes, including eyespots, ellipses, and midlines, and were proposed to have evolved through developmental shifts along a midline-to-eyespot continuum. Here we show that Notch (N) upregulation, followed by activation of the transcription factor...
متن کاملThe Evolutionary Genetics and Developmental Basis of Wing Pattern Variation in the Butterfly Bicyclus Anynana.
We have studied interactions between developmental processes and genetic variation for the eyespot color pattern on the adult dorsal forewing of the nymphalid butterfly, Bicyclus anynana. Truncation selection was applied in both an upward and a downward direction to the size of a single eyespot consisting of rings with wing scales of differing color pigments. High heritabilities resulted in rap...
متن کاملExpression pattern of a butterfly achaete-scute homolog reveals the homology of butterfly wing scales and insect sensory bristles
BACKGROUND Lepidopteran wing scales are the individual units of wing color patterns and were a key innovation during Lepidopteran evolution. On the basis of developmental and morphological evidence, it has been proposed that the sensory bristles of the insect peripheral nervous system and the wing scales of Lepidoptera are homologous structures. In order to determine if the developmental pathwa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 27 12 شماره
صفحات -
تاریخ انتشار 2010